Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
r19.29an
Metamath Proof Explorer
Description: A commonly used pattern in the spirit of r19.29 . (Contributed by Thierry Arnoux , 29-Dec-2019) (Proof shortened by Wolf Lammen , 17-Jun-2023)
Ref
Expression
Hypothesis
rexlimdva2.1
⊢ φ ∧ x ∈ A ∧ ψ → χ
Assertion
r19.29an
⊢ φ ∧ ∃ x ∈ A ψ → χ
Proof
Step
Hyp
Ref
Expression
1
rexlimdva2.1
⊢ φ ∧ x ∈ A ∧ ψ → χ
2
1
rexlimdva2
⊢ φ → ∃ x ∈ A ψ → χ
3
2
imp
⊢ φ ∧ ∃ x ∈ A ψ → χ