Metamath Proof Explorer


Theorem r19.29r

Description: Restricted quantifier version of 19.29r ; variation of r19.29 . (Contributed by NM, 31-Aug-1999) (Proof shortened by Wolf Lammen, 29-Jun-2023)

Ref Expression
Assertion r19.29r xAφxAψxAφψ

Proof

Step Hyp Ref Expression
1 iba ψφφψ
2 1 ralrexbid xAψxAφxAφψ
3 2 biimpac xAφxAψxAφψ