Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
r19.29r
Metamath Proof Explorer
Description: Restricted quantifier version of 19.29r ; variation of r19.29 .
(Contributed by NM , 31-Aug-1999) (Proof shortened by Wolf Lammen , 29-Jun-2023)
Ref
Expression
Assertion
r19.29r
⊢ ∃ x ∈ A φ ∧ ∀ x ∈ A ψ → ∃ x ∈ A φ ∧ ψ
Proof
Step
Hyp
Ref
Expression
1
iba
⊢ ψ → φ ↔ φ ∧ ψ
2
1
ralrexbid
⊢ ∀ x ∈ A ψ → ∃ x ∈ A φ ↔ ∃ x ∈ A φ ∧ ψ
3
2
biimpac
⊢ ∃ x ∈ A φ ∧ ∀ x ∈ A ψ → ∃ x ∈ A φ ∧ ψ