Metamath Proof Explorer


Theorem r19.29r

Description: Restricted quantifier version of 19.29r ; variation of r19.29 . (Contributed by NM, 31-Aug-1999) (Proof shortened by Wolf Lammen, 29-Jun-2023)

Ref Expression
Assertion r19.29r x A φ x A ψ x A φ ψ

Proof

Step Hyp Ref Expression
1 iba ψ φ φ ψ
2 1 ralrexbid x A ψ x A φ x A φ ψ
3 2 biimpac x A φ x A ψ x A φ ψ