Metamath Proof Explorer


Theorem r19.29r

Description: Restricted quantifier version of 19.29r ; variation of r19.29 . (Contributed by NM, 31-Aug-1999) (Proof shortened by Wolf Lammen, 29-Jun-2023)

Ref Expression
Assertion r19.29r
|- ( ( E. x e. A ph /\ A. x e. A ps ) -> E. x e. A ( ph /\ ps ) )

Proof

Step Hyp Ref Expression
1 r19.29
 |-  ( ( A. x e. A ps /\ E. x e. A ph ) -> E. x e. A ( ps /\ ph ) )
2 1 ancoms
 |-  ( ( E. x e. A ph /\ A. x e. A ps ) -> E. x e. A ( ps /\ ph ) )
3 pm3.22
 |-  ( ( ps /\ ph ) -> ( ph /\ ps ) )
4 3 reximi
 |-  ( E. x e. A ( ps /\ ph ) -> E. x e. A ( ph /\ ps ) )
5 2 4 syl
 |-  ( ( E. x e. A ph /\ A. x e. A ps ) -> E. x e. A ( ph /\ ps ) )