Metamath Proof Explorer


Theorem ralrexbid

Description: Formula-building rule for restricted existential quantifier, using a restricted universal quantifier to bind the quantified variable in the antecedent. (Contributed by AV, 21-Oct-2023) Reduce axiom usage. (Revised by SN, 13-Nov-2023) (Proof shortened by Wolf Lammen, 4-Nov-2024)

Ref Expression
Hypothesis ralrexbid.1
|- ( ph -> ( ps <-> th ) )
Assertion ralrexbid
|- ( A. x e. A ph -> ( E. x e. A ps <-> E. x e. A th ) )

Proof

Step Hyp Ref Expression
1 ralrexbid.1
 |-  ( ph -> ( ps <-> th ) )
2 1 ralimi
 |-  ( A. x e. A ph -> A. x e. A ( ps <-> th ) )
3 rexbi
 |-  ( A. x e. A ( ps <-> th ) -> ( E. x e. A ps <-> E. x e. A th ) )
4 2 3 syl
 |-  ( A. x e. A ph -> ( E. x e. A ps <-> E. x e. A th ) )