Metamath Proof Explorer


Theorem r19.29rOLD

Description: Obsolete version of r19.29r as of 22-Dec-2024. (Contributed by NM, 31-Aug-1999) (Proof shortened by Wolf Lammen, 29-Jun-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion r19.29rOLD xAφxAψxAφψ

Proof

Step Hyp Ref Expression
1 r19.29 xAψxAφxAψφ
2 1 ancoms xAφxAψxAψφ
3 pm3.22 ψφφψ
4 3 reximi xAψφxAφψ
5 2 4 syl xAφxAψxAφψ