Metamath Proof Explorer


Theorem r19.29rOLD

Description: Obsolete version of r19.29r as of 22-Dec-2024. (Contributed by NM, 31-Aug-1999) (Proof shortened by Wolf Lammen, 29-Jun-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion r19.29rOLD x A φ x A ψ x A φ ψ

Proof

Step Hyp Ref Expression
1 r19.29 x A ψ x A φ x A ψ φ
2 1 ancoms x A φ x A ψ x A ψ φ
3 pm3.22 ψ φ φ ψ
4 3 reximi x A ψ φ x A φ ψ
5 2 4 syl x A φ x A ψ x A φ ψ