Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
r19.37
Metamath Proof Explorer
Description: Restricted quantifier version of one direction of 19.37 . (The other
direction does not hold when A is empty.) (Contributed by FL , 13-May-2012) (Revised by Mario Carneiro , 11-Dec-2016)
Ref
Expression
Hypothesis
r19.37.1
⊢ Ⅎ x φ
Assertion
r19.37
⊢ ∃ x ∈ A φ → ψ → φ → ∃ x ∈ A ψ
Proof
Step
Hyp
Ref
Expression
1
r19.37.1
⊢ Ⅎ x φ
2
r19.35
⊢ ∃ x ∈ A φ → ψ ↔ ∀ x ∈ A φ → ∃ x ∈ A ψ
3
ax-1
⊢ φ → x ∈ A → φ
4
1 3
ralrimi
⊢ φ → ∀ x ∈ A φ
5
4
imim1i
⊢ ∀ x ∈ A φ → ∃ x ∈ A ψ → φ → ∃ x ∈ A ψ
6
2 5
sylbi
⊢ ∃ x ∈ A φ → ψ → φ → ∃ x ∈ A ψ