Metamath Proof Explorer


Theorem r19.37

Description: Restricted quantifier version of one direction of 19.37 . (The other direction does not hold when A is empty.) (Contributed by FL, 13-May-2012) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypothesis r19.37.1 xφ
Assertion r19.37 xAφψφxAψ

Proof

Step Hyp Ref Expression
1 r19.37.1 xφ
2 r19.35 xAφψxAφxAψ
3 ax-1 φxAφ
4 1 3 ralrimi φxAφ
5 4 imim1i xAφxAψφxAψ
6 2 5 sylbi xAφψφxAψ