Metamath Proof Explorer


Theorem r19.37zv

Description: Restricted quantifier version of Theorem 19.37 of Margaris p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Paul Chapman, 8-Oct-2007)

Ref Expression
Assertion r19.37zv AxAφψφxAψ

Proof

Step Hyp Ref Expression
1 r19.35 xAφψxAφxAψ
2 r19.3rzv AφxAφ
3 2 imbi1d AφxAψxAφxAψ
4 1 3 bitr4id AxAφψφxAψ