Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
r19.45zv
Next ⟩
r19.44zv
Metamath Proof Explorer
Ascii
Unicode
Theorem
r19.45zv
Description:
Restricted version of Theorem 19.45 of
Margaris
p. 90.
(Contributed by
NM
, 27-May-1998)
Ref
Expression
Assertion
r19.45zv
⊢
A
≠
∅
→
∃
x
∈
A
φ
∨
ψ
↔
φ
∨
∃
x
∈
A
ψ
Proof
Step
Hyp
Ref
Expression
1
r19.43
⊢
∃
x
∈
A
φ
∨
ψ
↔
∃
x
∈
A
φ
∨
∃
x
∈
A
ψ
2
r19.9rzv
⊢
A
≠
∅
→
φ
↔
∃
x
∈
A
φ
3
2
orbi1d
⊢
A
≠
∅
→
φ
∨
∃
x
∈
A
ψ
↔
∃
x
∈
A
φ
∨
∃
x
∈
A
ψ
4
1
3
bitr4id
⊢
A
≠
∅
→
∃
x
∈
A
φ
∨
ψ
↔
φ
∨
∃
x
∈
A
ψ