Metamath Proof Explorer


Theorem r19.3rz

Description: Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008)

Ref Expression
Hypothesis r19.3rz.1 xφ
Assertion r19.3rz AφxAφ

Proof

Step Hyp Ref Expression
1 r19.3rz.1 xφ
2 n0 AxxA
3 biimt xxAφxxAφ
4 2 3 sylbi AφxxAφ
5 df-ral xAφxxAφ
6 1 19.23 xxAφxxAφ
7 5 6 bitri xAφxxAφ
8 4 7 bitr4di AφxAφ