Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Restricted quantification Restricted universal and existential quantification r19.44v  
				
		 
		
			
		 
		Description:   One direction of a restricted quantifier version of 19.44  .  The other
       direction holds when A  is nonempty, see r19.44zv  .  (Contributed by NM , 2-Apr-2004) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					r19.44v    ⊢   ∃  x  ∈  A    φ   ∨   ψ      →    ∃  x  ∈  A   φ     ∨   ψ         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							r19.43   ⊢   ∃  x  ∈  A    φ   ∨   ψ      ↔    ∃  x  ∈  A   φ     ∨   ∃  x  ∈  A   ψ           
						
							2 
								
							 
							id   ⊢   ψ   →   ψ        
						
							3 
								2 
							 
							rexlimivw   ⊢   ∃  x  ∈  A   ψ     →   ψ        
						
							4 
								3 
							 
							orim2i   ⊢    ∃  x  ∈  A   φ     ∨   ∃  x  ∈  A   ψ      →    ∃  x  ∈  A   φ     ∨   ψ         
						
							5 
								1  4 
							 
							sylbi   ⊢   ∃  x  ∈  A    φ   ∨   ψ      →    ∃  x  ∈  A   φ     ∨   ψ