Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
r19.44v
Metamath Proof Explorer
Description: One direction of a restricted quantifier version of 19.44 . The other
direction holds when A is nonempty, see r19.44zv . (Contributed by NM , 2-Apr-2004)
Ref
Expression
Assertion
r19.44v
⊢ ∃ x ∈ A φ ∨ ψ → ∃ x ∈ A φ ∨ ψ
Proof
Step
Hyp
Ref
Expression
1
r19.43
⊢ ∃ x ∈ A φ ∨ ψ ↔ ∃ x ∈ A φ ∨ ∃ x ∈ A ψ
2
id
⊢ ψ → ψ
3
2
rexlimivw
⊢ ∃ x ∈ A ψ → ψ
4
3
orim2i
⊢ ∃ x ∈ A φ ∨ ∃ x ∈ A ψ → ∃ x ∈ A φ ∨ ψ
5
1 4
sylbi
⊢ ∃ x ∈ A φ ∨ ψ → ∃ x ∈ A φ ∨ ψ