Metamath Proof Explorer


Theorem rabeqel

Description: Class element of a restricted class abstraction. (Contributed by Peter Mazsa, 24-Jul-2021)

Ref Expression
Hypotheses rabeqel.1 B = x A | φ
rabeqel.2 x = C φ ψ
Assertion rabeqel C B ψ C A

Proof

Step Hyp Ref Expression
1 rabeqel.1 B = x A | φ
2 rabeqel.2 x = C φ ψ
3 2 1 elrab2 C B C A ψ
4 3 biancomi C B ψ C A