Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
eqrelf
Next ⟩
releleccnv
Metamath Proof Explorer
Ascii
Unicode
Theorem
eqrelf
Description:
The equality connective between relations.
(Contributed by
Peter Mazsa
, 25-Jun-2019)
Ref
Expression
Hypotheses
eqrelf.1
⊢
Ⅎ
_
x
A
eqrelf.2
⊢
Ⅎ
_
x
B
eqrelf.3
⊢
Ⅎ
_
y
A
eqrelf.4
⊢
Ⅎ
_
y
B
Assertion
eqrelf
⊢
Rel
⁡
A
∧
Rel
⁡
B
→
A
=
B
↔
∀
x
∀
y
x
y
∈
A
↔
x
y
∈
B
Proof
Step
Hyp
Ref
Expression
1
eqrelf.1
⊢
Ⅎ
_
x
A
2
eqrelf.2
⊢
Ⅎ
_
x
B
3
eqrelf.3
⊢
Ⅎ
_
y
A
4
eqrelf.4
⊢
Ⅎ
_
y
B
5
eqrel
⊢
Rel
⁡
A
∧
Rel
⁡
B
→
A
=
B
↔
∀
u
∀
v
u
v
∈
A
↔
u
v
∈
B
6
nfv
⊢
Ⅎ
u
x
y
∈
A
↔
x
y
∈
B
7
nfv
⊢
Ⅎ
v
x
y
∈
A
↔
x
y
∈
B
8
1
nfel2
⊢
Ⅎ
x
u
v
∈
A
9
2
nfel2
⊢
Ⅎ
x
u
v
∈
B
10
8
9
nfbi
⊢
Ⅎ
x
u
v
∈
A
↔
u
v
∈
B
11
3
nfel2
⊢
Ⅎ
y
u
v
∈
A
12
4
nfel2
⊢
Ⅎ
y
u
v
∈
B
13
11
12
nfbi
⊢
Ⅎ
y
u
v
∈
A
↔
u
v
∈
B
14
opeq12
⊢
x
=
u
∧
y
=
v
→
x
y
=
u
v
15
14
eleq1d
⊢
x
=
u
∧
y
=
v
→
x
y
∈
A
↔
u
v
∈
A
16
14
eleq1d
⊢
x
=
u
∧
y
=
v
→
x
y
∈
B
↔
u
v
∈
B
17
15
16
bibi12d
⊢
x
=
u
∧
y
=
v
→
x
y
∈
A
↔
x
y
∈
B
↔
u
v
∈
A
↔
u
v
∈
B
18
6
7
10
13
17
cbval2v
⊢
∀
x
∀
y
x
y
∈
A
↔
x
y
∈
B
↔
∀
u
∀
v
u
v
∈
A
↔
u
v
∈
B
19
5
18
bitr4di
⊢
Rel
⁡
A
∧
Rel
⁡
B
→
A
=
B
↔
∀
x
∀
y
x
y
∈
A
↔
x
y
∈
B