Metamath Proof Explorer


Theorem eqrelf

Description: The equality connective between relations. (Contributed by Peter Mazsa, 25-Jun-2019)

Ref Expression
Hypotheses eqrelf.1 _xA
eqrelf.2 _xB
eqrelf.3 _yA
eqrelf.4 _yB
Assertion eqrelf RelARelBA=BxyxyAxyB

Proof

Step Hyp Ref Expression
1 eqrelf.1 _xA
2 eqrelf.2 _xB
3 eqrelf.3 _yA
4 eqrelf.4 _yB
5 eqrel RelARelBA=BuvuvAuvB
6 nfv uxyAxyB
7 nfv vxyAxyB
8 1 nfel2 xuvA
9 2 nfel2 xuvB
10 8 9 nfbi xuvAuvB
11 3 nfel2 yuvA
12 4 nfel2 yuvB
13 11 12 nfbi yuvAuvB
14 opeq12 x=uy=vxy=uv
15 14 eleq1d x=uy=vxyAuvA
16 14 eleq1d x=uy=vxyBuvB
17 15 16 bibi12d x=uy=vxyAxyBuvAuvB
18 6 7 10 13 17 cbval2v xyxyAxyBuvuvAuvB
19 5 18 bitr4di RelARelBA=BxyxyAxyB