Metamath Proof Explorer


Theorem rabexd

Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 . (Contributed by AV, 16-Jul-2019)

Ref Expression
Hypotheses rabexd.1 B=xA|ψ
rabexd.2 φAV
Assertion rabexd φBV

Proof

Step Hyp Ref Expression
1 rabexd.1 B=xA|ψ
2 rabexd.2 φAV
3 rabexg AVxA|ψV
4 2 3 syl φxA|ψV
5 1 4 eqeltrid φBV