Metamath Proof Explorer


Theorem rabun2

Description: Abstraction restricted to a union. (Contributed by Stefan O'Rear, 5-Feb-2015)

Ref Expression
Assertion rabun2 xAB|φ=xA|φxB|φ

Proof

Step Hyp Ref Expression
1 df-rab xAB|φ=x|xABφ
2 df-rab xA|φ=x|xAφ
3 df-rab xB|φ=x|xBφ
4 2 3 uneq12i xA|φxB|φ=x|xAφx|xBφ
5 elun xABxAxB
6 5 anbi1i xABφxAxBφ
7 andir xAxBφxAφxBφ
8 6 7 bitri xABφxAφxBφ
9 8 abbii x|xABφ=x|xAφxBφ
10 unab x|xAφx|xBφ=x|xAφxBφ
11 9 10 eqtr4i x|xABφ=x|xAφx|xBφ
12 4 11 eqtr4i xA|φxB|φ=x|xABφ
13 1 12 eqtr4i xAB|φ=xA|φxB|φ