Metamath Proof Explorer


Theorem rabxm

Description: Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011)

Ref Expression
Assertion rabxm A=xA|φxA|¬φ

Proof

Step Hyp Ref Expression
1 rabid2 A=xA|φ¬φxAφ¬φ
2 exmidd xAφ¬φ
3 1 2 mprgbir A=xA|φ¬φ
4 unrab xA|φxA|¬φ=xA|φ¬φ
5 3 4 eqtr4i A=xA|φxA|¬φ