Metamath Proof Explorer


Theorem ralab

Description: Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010) Reduce axiom usage. (Revised by Gino Giotto, 2-Nov-2024)

Ref Expression
Hypothesis ralab.1 y=xφψ
Assertion ralab xy|φχxψχ

Proof

Step Hyp Ref Expression
1 ralab.1 y=xφψ
2 df-ral xy|φχxxy|φχ
3 df-clab xy|φxyφ
4 1 sbievw xyφψ
5 3 4 bitri xy|φψ
6 5 imbi1i xy|φχψχ
7 biid ψχψχ
8 6 7 bitri xy|φχψχ
9 8 albii xxy|φχxψχ
10 2 9 bitri xy|φχxψχ