Metamath Proof Explorer


Theorem ralcom13OLD

Description: Obsolete version of ralcom13 as of 2-Jan-2025. (Contributed by AV, 3-Dec-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ralcom13OLD xAyBzCφzCyBxAφ

Proof

Step Hyp Ref Expression
1 ralcom xAyBzCφyBxAzCφ
2 ralcom xAzCφzCxAφ
3 2 ralbii yBxAzCφyBzCxAφ
4 ralcom yBzCxAφzCyBxAφ
5 1 3 4 3bitri xAyBzCφzCyBxAφ