Metamath Proof Explorer


Theorem ralcom4

Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019) (Proof shortened by Wolf Lammen, 31-Oct-2024)

Ref Expression
Assertion ralcom4 xAyφyxAφ

Proof

Step Hyp Ref Expression
1 19.21v yxAφxAyφ
2 1 albii xyxAφxxAyφ
3 alcom yxxAφxyxAφ
4 df-ral xAyφxxAyφ
5 2 3 4 3bitr4ri xAyφyxxAφ
6 df-ral xAφxxAφ
7 6 albii yxAφyxxAφ
8 5 7 bitr4i xAyφyxAφ