Metamath Proof Explorer


Theorem raldifsnb

Description: Restricted universal quantification on a class difference with a singleton in terms of an implication. (Contributed by Alexander van der Vekens, 26-Jan-2018)

Ref Expression
Assertion raldifsnb xAxYφxAYφ

Proof

Step Hyp Ref Expression
1 velsn xYx=Y
2 nnel ¬xYxY
3 nne ¬xYx=Y
4 1 2 3 3bitr4ri ¬xY¬xY
5 4 con4bii xYxY
6 5 imbi1i xYφxYφ
7 6 ralbii xAxYφxAxYφ
8 raldifb xAxYφxAYφ
9 7 8 bitri xAxYφxAYφ