Metamath Proof Explorer


Theorem ralimralim

Description: Introducing any antecedent in a restricted universal quantification. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion ralimralim xAφxAψφ

Proof

Step Hyp Ref Expression
1 nfra1 xxAφ
2 rspa xAφxAφ
3 ax-1 φψφ
4 2 3 syl xAφxAψφ
5 4 ex xAφxAψφ
6 1 5 ralrimi xAφxAψφ