Metamath Proof Explorer


Theorem ralrimd

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) For a version based on fewer axioms see ralrimdv . (Contributed by NM, 16-Feb-2004)

Ref Expression
Hypotheses ralrimd.1 xφ
ralrimd.2 xψ
ralrimd.3 φψxAχ
Assertion ralrimd φψxAχ

Proof

Step Hyp Ref Expression
1 ralrimd.1 xφ
2 ralrimd.2 xψ
3 ralrimd.3 φψxAχ
4 1 2 3 alrimd φψxxAχ
5 df-ral xAχxxAχ
6 4 5 imbitrrdi φψxAχ