Metamath Proof Explorer


Theorem ralrimdv

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998) Reduce dependencies on axioms. (Revised by Wolf Lammen, 28-Dec-2019)

Ref Expression
Hypothesis ralrimdv.1 φψxAχ
Assertion ralrimdv φψxAχ

Proof

Step Hyp Ref Expression
1 ralrimdv.1 φψxAχ
2 1 imp φψxAχ
3 2 ralrimiv φψxAχ
4 3 ex φψxAχ