Metamath Proof Explorer


Theorem ralunb

Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion ralunb xABφxAφxBφ

Proof

Step Hyp Ref Expression
1 elunant xABφxAφxBφ
2 1 albii xxABφxxAφxBφ
3 19.26 xxAφxBφxxAφxxBφ
4 2 3 bitri xxABφxxAφxxBφ
5 df-ral xABφxxABφ
6 df-ral xAφxxAφ
7 df-ral xBφxxBφ
8 6 7 anbi12i xAφxBφxxAφxxBφ
9 4 5 8 3bitr4i xABφxAφxBφ