Metamath Proof Explorer


Theorem rankelpr

Description: Rank membership is inherited by unordered pairs. (Contributed by NM, 18-Sep-2006) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypotheses rankelun.1 AV
rankelun.2 BV
rankelun.3 CV
rankelun.4 DV
Assertion rankelpr rankArankCrankBrankDrankABrankCD

Proof

Step Hyp Ref Expression
1 rankelun.1 AV
2 rankelun.2 BV
3 rankelun.3 CV
4 rankelun.4 DV
5 1 2 3 4 rankelun rankArankCrankBrankDrankABrankCD
6 1 2 rankun rankAB=rankArankB
7 3 4 rankun rankCD=rankCrankD
8 5 6 7 3eltr3g rankArankCrankBrankDrankArankBrankCrankD
9 rankon rankCOn
10 rankon rankDOn
11 9 10 onun2i rankCrankDOn
12 11 onordi OrdrankCrankD
13 ordsucelsuc OrdrankCrankDrankArankBrankCrankDsucrankArankBsucrankCrankD
14 12 13 ax-mp rankArankBrankCrankDsucrankArankBsucrankCrankD
15 8 14 sylib rankArankCrankBrankDsucrankArankBsucrankCrankD
16 1 2 rankpr rankAB=sucrankArankB
17 3 4 rankpr rankCD=sucrankCrankD
18 15 16 17 3eltr4g rankArankCrankBrankDrankABrankCD