Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Infinity Rank rankpr  
				
		 
		
			
		 
		Description:   The rank of an unordered pair.  Part of Exercise 30 of Enderton 
       p. 207.  (Contributed by NM , 28-Nov-2003)   (Revised by Mario Carneiro , 17-Nov-2014) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ranksn.1   ⊢   A  ∈  V       
					 
					
						rankun.2   ⊢   B  ∈  V       
					 
				
					Assertion 
					rankpr   ⊢    rank  ⁡   A  B     =   suc  ⁡    rank  ⁡  A   ∪   rank  ⁡  B           
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ranksn.1  ⊢   A  ∈  V       
						
							2 
								
							 
							rankun.2  ⊢   B  ∈  V       
						
							3 
								
							 
							unir1  ⊢    ⋃   R 1 On     =  V       
						
							4 
								1  3 
							 
							eleqtrri  ⊢   A  ∈   ⋃   R 1 On          
						
							5 
								2  3 
							 
							eleqtrri  ⊢   B  ∈   ⋃   R 1 On          
						
							6 
								
							 
							rankprb   ⊢    A  ∈   ⋃   R 1 On       ∧   B  ∈   ⋃   R 1 On        →    rank  ⁡   A  B     =   suc  ⁡    rank  ⁡  A   ∪   rank  ⁡  B             
						
							7 
								4  5  6 
							 
							mp2an  ⊢    rank  ⁡   A  B     =   suc  ⁡    rank  ⁡  A   ∪   rank  ⁡  B