Metamath Proof Explorer


Theorem rankpr

Description: The rank of an unordered pair. Part of Exercise 30 of Enderton p. 207. (Contributed by NM, 28-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypotheses ranksn.1 AV
rankun.2 BV
Assertion rankpr rankAB=sucrankArankB

Proof

Step Hyp Ref Expression
1 ranksn.1 AV
2 rankun.2 BV
3 unir1 R1On=V
4 1 3 eleqtrri AR1On
5 2 3 eleqtrri BR1On
6 rankprb AR1OnBR1OnrankAB=sucrankArankB
7 4 5 6 mp2an rankAB=sucrankArankB