Metamath Proof Explorer


Theorem rankprb

Description: The rank of an unordered pair. Part of Exercise 30 of Enderton p. 207. (Contributed by Mario Carneiro, 10-Jun-2013)

Ref Expression
Assertion rankprb AR1OnBR1OnrankAB=sucrankArankB

Proof

Step Hyp Ref Expression
1 snwf AR1OnAR1On
2 snwf BR1OnBR1On
3 rankunb AR1OnBR1OnrankAB=rankArankB
4 1 2 3 syl2an AR1OnBR1OnrankAB=rankArankB
5 ranksnb AR1OnrankA=sucrankA
6 ranksnb BR1OnrankB=sucrankB
7 uneq12 rankA=sucrankArankB=sucrankBrankArankB=sucrankAsucrankB
8 5 6 7 syl2an AR1OnBR1OnrankArankB=sucrankAsucrankB
9 4 8 eqtrd AR1OnBR1OnrankAB=sucrankAsucrankB
10 df-pr AB=AB
11 10 fveq2i rankAB=rankAB
12 rankon rankAOn
13 12 onordi OrdrankA
14 rankon rankBOn
15 14 onordi OrdrankB
16 ordsucun OrdrankAOrdrankBsucrankArankB=sucrankAsucrankB
17 13 15 16 mp2an sucrankArankB=sucrankAsucrankB
18 9 11 17 3eqtr4g AR1OnBR1OnrankAB=sucrankArankB