Metamath Proof Explorer


Theorem rb-bijust

Description: Justification for rb-imdf . (Contributed by Anthony Hart, 17-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rb-bijust φ ψ ¬ ¬ ¬ φ ψ ¬ ¬ ψ φ

Proof

Step Hyp Ref Expression
1 dfbi1 φ ψ ¬ φ ψ ¬ ψ φ
2 imor φ ψ ¬ φ ψ
3 imor ψ φ ¬ ψ φ
4 3 notbii ¬ ψ φ ¬ ¬ ψ φ
5 2 4 imbi12i φ ψ ¬ ψ φ ¬ φ ψ ¬ ¬ ψ φ
6 5 notbii ¬ φ ψ ¬ ψ φ ¬ ¬ φ ψ ¬ ¬ ψ φ
7 pm4.62 ¬ φ ψ ¬ ¬ ψ φ ¬ ¬ φ ψ ¬ ¬ ψ φ
8 7 notbii ¬ ¬ φ ψ ¬ ¬ ψ φ ¬ ¬ ¬ φ ψ ¬ ¬ ψ φ
9 1 6 8 3bitri φ ψ ¬ ¬ ¬ φ ψ ¬ ¬ ψ φ