Metamath Proof Explorer


Theorem rb-imdf

Description: The definition of implication, in terms of \/ and -. . (Contributed by Anthony Hart, 17-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rb-imdf ¬ ¬ ¬ φ ψ ¬ φ ψ ¬ ¬ ¬ φ ψ φ ψ

Proof

Step Hyp Ref Expression
1 imor φ ψ ¬ φ ψ
2 rb-bijust φ ψ ¬ φ ψ ¬ ¬ ¬ φ ψ ¬ φ ψ ¬ ¬ ¬ φ ψ φ ψ
3 1 2 mpbi ¬ ¬ ¬ φ ψ ¬ φ ψ ¬ ¬ ¬ φ ψ φ ψ