Description: The definition of implication, in terms of \/ and -. . (Contributed by Anthony Hart, 17-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | rb-imdf | |- -. ( -. ( -. ( ph -> ps ) \/ ( -. ph \/ ps ) ) \/ -. ( -. ( -. ph \/ ps ) \/ ( ph -> ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imor | |- ( ( ph -> ps ) <-> ( -. ph \/ ps ) ) |
|
2 | rb-bijust | |- ( ( ( ph -> ps ) <-> ( -. ph \/ ps ) ) <-> -. ( -. ( -. ( ph -> ps ) \/ ( -. ph \/ ps ) ) \/ -. ( -. ( -. ph \/ ps ) \/ ( ph -> ps ) ) ) ) |
|
3 | 1 2 | mpbi | |- -. ( -. ( -. ( ph -> ps ) \/ ( -. ph \/ ps ) ) \/ -. ( -. ( -. ph \/ ps ) \/ ( ph -> ps ) ) ) |