Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Other axiomatizations related to classical propositional calculus
Derive the Lukasiewicz axioms from the Russell-Bernays Axioms
rb-imdf
Metamath Proof Explorer
Description: The definition of implication, in terms of \/ and -. .
(Contributed by Anthony Hart , 17-Aug-2011)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Assertion
rb-imdf
⊢ ¬ ( ¬ ( ¬ ( 𝜑 → 𝜓 ) ∨ ( ¬ 𝜑 ∨ 𝜓 ) ) ∨ ¬ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( 𝜑 → 𝜓 ) ) )
Proof
Step
Hyp
Ref
Expression
1
imor
⊢ ( ( 𝜑 → 𝜓 ) ↔ ( ¬ 𝜑 ∨ 𝜓 ) )
2
rb-bijust
⊢ ( ( ( 𝜑 → 𝜓 ) ↔ ( ¬ 𝜑 ∨ 𝜓 ) ) ↔ ¬ ( ¬ ( ¬ ( 𝜑 → 𝜓 ) ∨ ( ¬ 𝜑 ∨ 𝜓 ) ) ∨ ¬ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( 𝜑 → 𝜓 ) ) ) )
3
1 2
mpbi
⊢ ¬ ( ¬ ( ¬ ( 𝜑 → 𝜓 ) ∨ ( ¬ 𝜑 ∨ 𝜓 ) ) ∨ ¬ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( 𝜑 → 𝜓 ) ) )