Metamath Proof Explorer


Theorem readdlid

Description: Real number version of addlid . (Contributed by SN, 23-Jan-2024)

Ref Expression
Assertion readdlid A0+A=A

Proof

Step Hyp Ref Expression
1 re0m0e0 0-0=0
2 1 oveq1i 0-0+A=0+A
3 reneg0addlid A0-0+A=A
4 2 3 eqtr3id A0+A=A