Metamath Proof Explorer


Theorem refrelressn

Description: Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 ) is reflexive. (Contributed by Peter Mazsa, 12-Jun-2024)

Ref Expression
Assertion refrelressn AVRefRelRA

Proof

Step Hyp Ref Expression
1 refressn AVxdomRAranRAxRAx
2 relres RelRA
3 dfrefrel5 RefRelRAxdomRAranRAxRAxRelRA
4 1 2 3 sylanblrc AVRefRelRA