Metamath Proof Explorer


Theorem refrelsredund3

Description: The naive version of the class of reflexive relations { r e. Rels | A. x e. dom r x r x } is redundant with respect to the class of reflexive relations (see dfrefrels3 ) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022)

Ref Expression
Assertion refrelsredund3 rRels|xdomrxrxRedundRefRelsEqvRels

Proof

Step Hyp Ref Expression
1 refrelsredund2 rRels|IdomrrRedundRefRelsEqvRels
2 idrefALT Idomrrxdomrxrx
3 2 rabbii rRels|Idomrr=rRels|xdomrxrx
4 3 redundeq1 rRels|IdomrrRedundRefRelsEqvRelsrRels|xdomrxrxRedundRefRelsEqvRels
5 1 4 mpbi rRels|xdomrxrxRedundRefRelsEqvRels