Description: The naive version of the class of reflexive relations { r e. Rels | A. x e. dom r x r x } is redundant with respect to the class of reflexive relations (see dfrefrels3 ) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | refrelsredund3 | ⊢ { 𝑟 ∈ Rels ∣ ∀ 𝑥 ∈ dom 𝑟 𝑥 𝑟 𝑥 } Redund 〈 RefRels , EqvRels 〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrelsredund2 | ⊢ { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } Redund 〈 RefRels , EqvRels 〉 | |
| 2 | idrefALT | ⊢ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ↔ ∀ 𝑥 ∈ dom 𝑟 𝑥 𝑟 𝑥 ) | |
| 3 | 2 | rabbii | ⊢ { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } = { 𝑟 ∈ Rels ∣ ∀ 𝑥 ∈ dom 𝑟 𝑥 𝑟 𝑥 } |
| 4 | 3 | redundeq1 | ⊢ ( { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } Redund 〈 RefRels , EqvRels 〉 ↔ { 𝑟 ∈ Rels ∣ ∀ 𝑥 ∈ dom 𝑟 𝑥 𝑟 𝑥 } Redund 〈 RefRels , EqvRels 〉 ) |
| 5 | 1 4 | mpbi | ⊢ { 𝑟 ∈ Rels ∣ ∀ 𝑥 ∈ dom 𝑟 𝑥 𝑟 𝑥 } Redund 〈 RefRels , EqvRels 〉 |