Metamath Proof Explorer


Theorem redundeq1

Description: Equivalence of redundancy predicates. (Contributed by Peter Mazsa, 26-Oct-2022)

Ref Expression
Hypothesis redundeq1.1 𝐴 = 𝐷
Assertion redundeq1 ( 𝐴 Redund ⟨ 𝐵 , 𝐶 ⟩ ↔ 𝐷 Redund ⟨ 𝐵 , 𝐶 ⟩ )

Proof

Step Hyp Ref Expression
1 redundeq1.1 𝐴 = 𝐷
2 1 sseq1i ( 𝐴𝐵𝐷𝐵 )
3 1 ineq1i ( 𝐴𝐶 ) = ( 𝐷𝐶 )
4 3 eqeq1i ( ( 𝐴𝐶 ) = ( 𝐵𝐶 ) ↔ ( 𝐷𝐶 ) = ( 𝐵𝐶 ) )
5 2 4 anbi12i ( ( 𝐴𝐵 ∧ ( 𝐴𝐶 ) = ( 𝐵𝐶 ) ) ↔ ( 𝐷𝐵 ∧ ( 𝐷𝐶 ) = ( 𝐵𝐶 ) ) )
6 df-redund ( 𝐴 Redund ⟨ 𝐵 , 𝐶 ⟩ ↔ ( 𝐴𝐵 ∧ ( 𝐴𝐶 ) = ( 𝐵𝐶 ) ) )
7 df-redund ( 𝐷 Redund ⟨ 𝐵 , 𝐶 ⟩ ↔ ( 𝐷𝐵 ∧ ( 𝐷𝐶 ) = ( 𝐵𝐶 ) ) )
8 5 6 7 3bitr4i ( 𝐴 Redund ⟨ 𝐵 , 𝐶 ⟩ ↔ 𝐷 Redund ⟨ 𝐵 , 𝐶 ⟩ )