Description: Equivalence of redundancy predicates. (Contributed by Peter Mazsa, 26-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | redundeq1.1 | ⊢ 𝐴 = 𝐷 | |
| Assertion | redundeq1 | ⊢ ( 𝐴 Redund 〈 𝐵 , 𝐶 〉 ↔ 𝐷 Redund 〈 𝐵 , 𝐶 〉 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | redundeq1.1 | ⊢ 𝐴 = 𝐷 | |
| 2 | 1 | sseq1i | ⊢ ( 𝐴 ⊆ 𝐵 ↔ 𝐷 ⊆ 𝐵 ) | 
| 3 | 1 | ineq1i | ⊢ ( 𝐴 ∩ 𝐶 ) = ( 𝐷 ∩ 𝐶 ) | 
| 4 | 3 | eqeq1i | ⊢ ( ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ↔ ( 𝐷 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) | 
| 5 | 2 4 | anbi12i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) ↔ ( 𝐷 ⊆ 𝐵 ∧ ( 𝐷 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) ) | 
| 6 | df-redund | ⊢ ( 𝐴 Redund 〈 𝐵 , 𝐶 〉 ↔ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) ) | |
| 7 | df-redund | ⊢ ( 𝐷 Redund 〈 𝐵 , 𝐶 〉 ↔ ( 𝐷 ⊆ 𝐵 ∧ ( 𝐷 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) ) | |
| 8 | 5 6 7 | 3bitr4i | ⊢ ( 𝐴 Redund 〈 𝐵 , 𝐶 〉 ↔ 𝐷 Redund 〈 𝐵 , 𝐶 〉 ) |