Metamath Proof Explorer


Theorem redundeq1

Description: Equivalence of redundancy predicates. (Contributed by Peter Mazsa, 26-Oct-2022)

Ref Expression
Hypothesis redundeq1.1
|- A = D
Assertion redundeq1
|- ( A Redund <. B , C >. <-> D Redund <. B , C >. )

Proof

Step Hyp Ref Expression
1 redundeq1.1
 |-  A = D
2 1 sseq1i
 |-  ( A C_ B <-> D C_ B )
3 1 ineq1i
 |-  ( A i^i C ) = ( D i^i C )
4 3 eqeq1i
 |-  ( ( A i^i C ) = ( B i^i C ) <-> ( D i^i C ) = ( B i^i C ) )
5 2 4 anbi12i
 |-  ( ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) <-> ( D C_ B /\ ( D i^i C ) = ( B i^i C ) ) )
6 df-redund
 |-  ( A Redund <. B , C >. <-> ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) )
7 df-redund
 |-  ( D Redund <. B , C >. <-> ( D C_ B /\ ( D i^i C ) = ( B i^i C ) ) )
8 5 6 7 3bitr4i
 |-  ( A Redund <. B , C >. <-> D Redund <. B , C >. )