Step |
Hyp |
Ref |
Expression |
1 |
|
redundeq1.1 |
|- A = D |
2 |
1
|
sseq1i |
|- ( A C_ B <-> D C_ B ) |
3 |
1
|
ineq1i |
|- ( A i^i C ) = ( D i^i C ) |
4 |
3
|
eqeq1i |
|- ( ( A i^i C ) = ( B i^i C ) <-> ( D i^i C ) = ( B i^i C ) ) |
5 |
2 4
|
anbi12i |
|- ( ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) <-> ( D C_ B /\ ( D i^i C ) = ( B i^i C ) ) ) |
6 |
|
df-redund |
|- ( A Redund <. B , C >. <-> ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) ) |
7 |
|
df-redund |
|- ( D Redund <. B , C >. <-> ( D C_ B /\ ( D i^i C ) = ( B i^i C ) ) ) |
8 |
5 6 7
|
3bitr4i |
|- ( A Redund <. B , C >. <-> D Redund <. B , C >. ) |