| Step | Hyp | Ref | Expression | 
						
							| 1 |  | redundeq1.1 |  |-  A = D | 
						
							| 2 | 1 | sseq1i |  |-  ( A C_ B <-> D C_ B ) | 
						
							| 3 | 1 | ineq1i |  |-  ( A i^i C ) = ( D i^i C ) | 
						
							| 4 | 3 | eqeq1i |  |-  ( ( A i^i C ) = ( B i^i C ) <-> ( D i^i C ) = ( B i^i C ) ) | 
						
							| 5 | 2 4 | anbi12i |  |-  ( ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) <-> ( D C_ B /\ ( D i^i C ) = ( B i^i C ) ) ) | 
						
							| 6 |  | df-redund |  |-  ( A Redund <. B , C >. <-> ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) ) | 
						
							| 7 |  | df-redund |  |-  ( D Redund <. B , C >. <-> ( D C_ B /\ ( D i^i C ) = ( B i^i C ) ) ) | 
						
							| 8 | 5 6 7 | 3bitr4i |  |-  ( A Redund <. B , C >. <-> D Redund <. B , C >. ) |