| Step | Hyp | Ref | Expression | 
						
							| 1 |  | redundpim3.1 |  |-  ( th -> ch ) | 
						
							| 2 |  | anbi1 |  |-  ( ( ( ph /\ ch ) <-> ( ps /\ ch ) ) -> ( ( ( ph /\ ch ) /\ th ) <-> ( ( ps /\ ch ) /\ th ) ) ) | 
						
							| 3 | 1 | pm4.71ri |  |-  ( th <-> ( ch /\ th ) ) | 
						
							| 4 | 3 | bianass |  |-  ( ( ph /\ th ) <-> ( ( ph /\ ch ) /\ th ) ) | 
						
							| 5 | 3 | bianass |  |-  ( ( ps /\ th ) <-> ( ( ps /\ ch ) /\ th ) ) | 
						
							| 6 | 2 4 5 | 3bitr4g |  |-  ( ( ( ph /\ ch ) <-> ( ps /\ ch ) ) -> ( ( ph /\ th ) <-> ( ps /\ th ) ) ) | 
						
							| 7 | 6 | anim2i |  |-  ( ( ( ph -> ps ) /\ ( ( ph /\ ch ) <-> ( ps /\ ch ) ) ) -> ( ( ph -> ps ) /\ ( ( ph /\ th ) <-> ( ps /\ th ) ) ) ) | 
						
							| 8 |  | df-redundp |  |-  ( redund ( ph , ps , ch ) <-> ( ( ph -> ps ) /\ ( ( ph /\ ch ) <-> ( ps /\ ch ) ) ) ) | 
						
							| 9 |  | df-redundp |  |-  ( redund ( ph , ps , th ) <-> ( ( ph -> ps ) /\ ( ( ph /\ th ) <-> ( ps /\ th ) ) ) ) | 
						
							| 10 | 7 8 9 | 3imtr4i |  |-  ( redund ( ph , ps , ch ) -> redund ( ph , ps , th ) ) |