Metamath Proof Explorer


Theorem redundpim3

Description: Implication of redundancy of proposition. (Contributed by Peter Mazsa, 26-Oct-2022)

Ref Expression
Hypothesis redundpim3.1
|- ( th -> ch )
Assertion redundpim3
|- ( redund ( ph , ps , ch ) -> redund ( ph , ps , th ) )

Proof

Step Hyp Ref Expression
1 redundpim3.1
 |-  ( th -> ch )
2 anbi1
 |-  ( ( ( ph /\ ch ) <-> ( ps /\ ch ) ) -> ( ( ( ph /\ ch ) /\ th ) <-> ( ( ps /\ ch ) /\ th ) ) )
3 1 pm4.71ri
 |-  ( th <-> ( ch /\ th ) )
4 3 bianass
 |-  ( ( ph /\ th ) <-> ( ( ph /\ ch ) /\ th ) )
5 3 bianass
 |-  ( ( ps /\ th ) <-> ( ( ps /\ ch ) /\ th ) )
6 2 4 5 3bitr4g
 |-  ( ( ( ph /\ ch ) <-> ( ps /\ ch ) ) -> ( ( ph /\ th ) <-> ( ps /\ th ) ) )
7 6 anim2i
 |-  ( ( ( ph -> ps ) /\ ( ( ph /\ ch ) <-> ( ps /\ ch ) ) ) -> ( ( ph -> ps ) /\ ( ( ph /\ th ) <-> ( ps /\ th ) ) ) )
8 df-redundp
 |-  ( redund ( ph , ps , ch ) <-> ( ( ph -> ps ) /\ ( ( ph /\ ch ) <-> ( ps /\ ch ) ) ) )
9 df-redundp
 |-  ( redund ( ph , ps , th ) <-> ( ( ph -> ps ) /\ ( ( ph /\ th ) <-> ( ps /\ th ) ) ) )
10 7 8 9 3imtr4i
 |-  ( redund ( ph , ps , ch ) -> redund ( ph , ps , th ) )