Metamath Proof Explorer


Theorem redundpbi1

Description: Equivalence of redundancy of propositions. (Contributed by Peter Mazsa, 25-Oct-2022)

Ref Expression
Hypothesis redundpbi1.1
|- ( ph <-> th )
Assertion redundpbi1
|- ( redund ( ph , ps , ch ) <-> redund ( th , ps , ch ) )

Proof

Step Hyp Ref Expression
1 redundpbi1.1
 |-  ( ph <-> th )
2 1 imbi1i
 |-  ( ( ph -> ps ) <-> ( th -> ps ) )
3 1 anbi1i
 |-  ( ( ph /\ ch ) <-> ( th /\ ch ) )
4 3 bibi1i
 |-  ( ( ( ph /\ ch ) <-> ( ps /\ ch ) ) <-> ( ( th /\ ch ) <-> ( ps /\ ch ) ) )
5 2 4 anbi12i
 |-  ( ( ( ph -> ps ) /\ ( ( ph /\ ch ) <-> ( ps /\ ch ) ) ) <-> ( ( th -> ps ) /\ ( ( th /\ ch ) <-> ( ps /\ ch ) ) ) )
6 df-redundp
 |-  ( redund ( ph , ps , ch ) <-> ( ( ph -> ps ) /\ ( ( ph /\ ch ) <-> ( ps /\ ch ) ) ) )
7 df-redundp
 |-  ( redund ( th , ps , ch ) <-> ( ( th -> ps ) /\ ( ( th /\ ch ) <-> ( ps /\ ch ) ) ) )
8 5 6 7 3bitr4i
 |-  ( redund ( ph , ps , ch ) <-> redund ( th , ps , ch ) )