Metamath Proof Explorer


Definition df-redundp

Description: Define the redundancy operator for propositions, cf. df-redund . (Contributed by Peter Mazsa, 23-Oct-2022)

Ref Expression
Assertion df-redundp
|- ( redund ( ph , ps , ch ) <-> ( ( ph -> ps ) /\ ( ( ph /\ ch ) <-> ( ps /\ ch ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 wph
 |-  ph
1 wps
 |-  ps
2 wch
 |-  ch
3 0 1 2 wredundp
 |-  redund ( ph , ps , ch )
4 0 1 wi
 |-  ( ph -> ps )
5 0 2 wa
 |-  ( ph /\ ch )
6 1 2 wa
 |-  ( ps /\ ch )
7 5 6 wb
 |-  ( ( ph /\ ch ) <-> ( ps /\ ch ) )
8 4 7 wa
 |-  ( ( ph -> ps ) /\ ( ( ph /\ ch ) <-> ( ps /\ ch ) ) )
9 3 8 wb
 |-  ( redund ( ph , ps , ch ) <-> ( ( ph -> ps ) /\ ( ( ph /\ ch ) <-> ( ps /\ ch ) ) ) )