Description: Define the redundancy operator for propositions, cf. df-redund . (Contributed by Peter Mazsa, 23-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | df-redundp | |- ( redund ( ph , ps , ch ) <-> ( ( ph -> ps ) /\ ( ( ph /\ ch ) <-> ( ps /\ ch ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | wph | |- ph |
|
1 | wps | |- ps |
|
2 | wch | |- ch |
|
3 | 0 1 2 | wredundp | |- redund ( ph , ps , ch ) |
4 | 0 1 | wi | |- ( ph -> ps ) |
5 | 0 2 | wa | |- ( ph /\ ch ) |
6 | 1 2 | wa | |- ( ps /\ ch ) |
7 | 5 6 | wb | |- ( ( ph /\ ch ) <-> ( ps /\ ch ) ) |
8 | 4 7 | wa | |- ( ( ph -> ps ) /\ ( ( ph /\ ch ) <-> ( ps /\ ch ) ) ) |
9 | 3 8 | wb | |- ( redund ( ph , ps , ch ) <-> ( ( ph -> ps ) /\ ( ( ph /\ ch ) <-> ( ps /\ ch ) ) ) ) |