Description: Define the redundancy operator for propositions, cf. df-redund . (Contributed by Peter Mazsa, 23-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-redundp | |- ( redund ( ph , ps , ch ) <-> ( ( ph -> ps ) /\ ( ( ph /\ ch ) <-> ( ps /\ ch ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | wph | |- ph | |
| 1 | wps | |- ps | |
| 2 | wch | |- ch | |
| 3 | 0 1 2 | wredundp | |- redund ( ph , ps , ch ) | 
| 4 | 0 1 | wi | |- ( ph -> ps ) | 
| 5 | 0 2 | wa | |- ( ph /\ ch ) | 
| 6 | 1 2 | wa | |- ( ps /\ ch ) | 
| 7 | 5 6 | wb | |- ( ( ph /\ ch ) <-> ( ps /\ ch ) ) | 
| 8 | 4 7 | wa | |- ( ( ph -> ps ) /\ ( ( ph /\ ch ) <-> ( ps /\ ch ) ) ) | 
| 9 | 3 8 | wb | |- ( redund ( ph , ps , ch ) <-> ( ( ph -> ps ) /\ ( ( ph /\ ch ) <-> ( ps /\ ch ) ) ) ) |