| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sseq12 |  |-  ( ( x = A /\ y = B ) -> ( x C_ y <-> A C_ B ) ) | 
						
							| 2 | 1 | 3adant3 |  |-  ( ( x = A /\ y = B /\ z = C ) -> ( x C_ y <-> A C_ B ) ) | 
						
							| 3 |  | ineq12 |  |-  ( ( x = A /\ z = C ) -> ( x i^i z ) = ( A i^i C ) ) | 
						
							| 4 | 3 | 3adant2 |  |-  ( ( x = A /\ y = B /\ z = C ) -> ( x i^i z ) = ( A i^i C ) ) | 
						
							| 5 |  | ineq12 |  |-  ( ( y = B /\ z = C ) -> ( y i^i z ) = ( B i^i C ) ) | 
						
							| 6 | 5 | 3adant1 |  |-  ( ( x = A /\ y = B /\ z = C ) -> ( y i^i z ) = ( B i^i C ) ) | 
						
							| 7 | 4 6 | eqeq12d |  |-  ( ( x = A /\ y = B /\ z = C ) -> ( ( x i^i z ) = ( y i^i z ) <-> ( A i^i C ) = ( B i^i C ) ) ) | 
						
							| 8 | 2 7 | anbi12d |  |-  ( ( x = A /\ y = B /\ z = C ) -> ( ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) <-> ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) ) ) | 
						
							| 9 |  | df-redunds |  |-  Redunds = `' { <. <. y , z >. , x >. | ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) } | 
						
							| 10 | 8 9 | brcnvrabga |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( A Redunds <. B , C >. <-> ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) ) ) |