Step |
Hyp |
Ref |
Expression |
1 |
|
sseq12 |
|- ( ( x = A /\ y = B ) -> ( x C_ y <-> A C_ B ) ) |
2 |
1
|
3adant3 |
|- ( ( x = A /\ y = B /\ z = C ) -> ( x C_ y <-> A C_ B ) ) |
3 |
|
ineq12 |
|- ( ( x = A /\ z = C ) -> ( x i^i z ) = ( A i^i C ) ) |
4 |
3
|
3adant2 |
|- ( ( x = A /\ y = B /\ z = C ) -> ( x i^i z ) = ( A i^i C ) ) |
5 |
|
ineq12 |
|- ( ( y = B /\ z = C ) -> ( y i^i z ) = ( B i^i C ) ) |
6 |
5
|
3adant1 |
|- ( ( x = A /\ y = B /\ z = C ) -> ( y i^i z ) = ( B i^i C ) ) |
7 |
4 6
|
eqeq12d |
|- ( ( x = A /\ y = B /\ z = C ) -> ( ( x i^i z ) = ( y i^i z ) <-> ( A i^i C ) = ( B i^i C ) ) ) |
8 |
2 7
|
anbi12d |
|- ( ( x = A /\ y = B /\ z = C ) -> ( ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) <-> ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) ) ) |
9 |
|
df-redunds |
|- Redunds = `' { <. <. y , z >. , x >. | ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) } |
10 |
8 9
|
brcnvrabga |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A Redunds <. B , C >. <-> ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) ) ) |