Metamath Proof Explorer


Theorem brredunds

Description: Binary relation on the class of all redundant sets. (Contributed by Peter Mazsa, 25-Oct-2022)

Ref Expression
Assertion brredunds ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( 𝐴 Redunds ⟨ 𝐵 , 𝐶 ⟩ ↔ ( 𝐴𝐵 ∧ ( 𝐴𝐶 ) = ( 𝐵𝐶 ) ) ) )

Proof

Step Hyp Ref Expression
1 sseq12 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝑥𝑦𝐴𝐵 ) )
2 1 3adant3 ( ( 𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶 ) → ( 𝑥𝑦𝐴𝐵 ) )
3 ineq12 ( ( 𝑥 = 𝐴𝑧 = 𝐶 ) → ( 𝑥𝑧 ) = ( 𝐴𝐶 ) )
4 3 3adant2 ( ( 𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶 ) → ( 𝑥𝑧 ) = ( 𝐴𝐶 ) )
5 ineq12 ( ( 𝑦 = 𝐵𝑧 = 𝐶 ) → ( 𝑦𝑧 ) = ( 𝐵𝐶 ) )
6 5 3adant1 ( ( 𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶 ) → ( 𝑦𝑧 ) = ( 𝐵𝐶 ) )
7 4 6 eqeq12d ( ( 𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶 ) → ( ( 𝑥𝑧 ) = ( 𝑦𝑧 ) ↔ ( 𝐴𝐶 ) = ( 𝐵𝐶 ) ) )
8 2 7 anbi12d ( ( 𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶 ) → ( ( 𝑥𝑦 ∧ ( 𝑥𝑧 ) = ( 𝑦𝑧 ) ) ↔ ( 𝐴𝐵 ∧ ( 𝐴𝐶 ) = ( 𝐵𝐶 ) ) ) )
9 df-redunds Redunds = { ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑥 ⟩ ∣ ( 𝑥𝑦 ∧ ( 𝑥𝑧 ) = ( 𝑦𝑧 ) ) }
10 8 9 brcnvrabga ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( 𝐴 Redunds ⟨ 𝐵 , 𝐶 ⟩ ↔ ( 𝐴𝐵 ∧ ( 𝐴𝐶 ) = ( 𝐵𝐶 ) ) ) )