Step |
Hyp |
Ref |
Expression |
1 |
|
sseq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵 ) ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵 ) ) |
3 |
|
ineq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑧 = 𝐶 ) → ( 𝑥 ∩ 𝑧 ) = ( 𝐴 ∩ 𝐶 ) ) |
4 |
3
|
3adant2 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝑥 ∩ 𝑧 ) = ( 𝐴 ∩ 𝐶 ) ) |
5 |
|
ineq12 |
⊢ ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝑦 ∩ 𝑧 ) = ( 𝐵 ∩ 𝐶 ) ) |
6 |
5
|
3adant1 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝑦 ∩ 𝑧 ) = ( 𝐵 ∩ 𝐶 ) ) |
7 |
4 6
|
eqeq12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( ( 𝑥 ∩ 𝑧 ) = ( 𝑦 ∩ 𝑧 ) ↔ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) ) |
8 |
2 7
|
anbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( ( 𝑥 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑧 ) = ( 𝑦 ∩ 𝑧 ) ) ↔ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) ) ) |
9 |
|
df-redunds |
⊢ Redunds = ◡ { 〈 〈 𝑦 , 𝑧 〉 , 𝑥 〉 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑧 ) = ( 𝑦 ∩ 𝑧 ) ) } |
10 |
8 9
|
brcnvrabga |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 Redunds 〈 𝐵 , 𝐶 〉 ↔ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) ) ) |