| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sseq12 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝑥  ⊆  𝑦  ↔  𝐴  ⊆  𝐵 ) ) | 
						
							| 2 | 1 | 3adant3 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  →  ( 𝑥  ⊆  𝑦  ↔  𝐴  ⊆  𝐵 ) ) | 
						
							| 3 |  | ineq12 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑧  =  𝐶 )  →  ( 𝑥  ∩  𝑧 )  =  ( 𝐴  ∩  𝐶 ) ) | 
						
							| 4 | 3 | 3adant2 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  →  ( 𝑥  ∩  𝑧 )  =  ( 𝐴  ∩  𝐶 ) ) | 
						
							| 5 |  | ineq12 | ⊢ ( ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  →  ( 𝑦  ∩  𝑧 )  =  ( 𝐵  ∩  𝐶 ) ) | 
						
							| 6 | 5 | 3adant1 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  →  ( 𝑦  ∩  𝑧 )  =  ( 𝐵  ∩  𝐶 ) ) | 
						
							| 7 | 4 6 | eqeq12d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  →  ( ( 𝑥  ∩  𝑧 )  =  ( 𝑦  ∩  𝑧 )  ↔  ( 𝐴  ∩  𝐶 )  =  ( 𝐵  ∩  𝐶 ) ) ) | 
						
							| 8 | 2 7 | anbi12d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  →  ( ( 𝑥  ⊆  𝑦  ∧  ( 𝑥  ∩  𝑧 )  =  ( 𝑦  ∩  𝑧 ) )  ↔  ( 𝐴  ⊆  𝐵  ∧  ( 𝐴  ∩  𝐶 )  =  ( 𝐵  ∩  𝐶 ) ) ) ) | 
						
							| 9 |  | df-redunds | ⊢  Redunds   =  ◡ { 〈 〈 𝑦 ,  𝑧 〉 ,  𝑥 〉  ∣  ( 𝑥  ⊆  𝑦  ∧  ( 𝑥  ∩  𝑧 )  =  ( 𝑦  ∩  𝑧 ) ) } | 
						
							| 10 | 8 9 | brcnvrabga | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴  Redunds  〈 𝐵 ,  𝐶 〉  ↔  ( 𝐴  ⊆  𝐵  ∧  ( 𝐴  ∩  𝐶 )  =  ( 𝐵  ∩  𝐶 ) ) ) ) |