Metamath Proof Explorer


Theorem brcnvrabga

Description: The law of concretion for the converse of operation class abstraction. (Contributed by Peter Mazsa, 25-Oct-2022)

Ref Expression
Hypotheses brrabga.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶 ) → ( 𝜑𝜓 ) )
brcnvrabga.2 𝑅 = { ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑥 ⟩ ∣ 𝜑 }
Assertion brcnvrabga ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( 𝐴 𝑅𝐵 , 𝐶 ⟩ ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 brrabga.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶 ) → ( 𝜑𝜓 ) )
2 brcnvrabga.2 𝑅 = { ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑥 ⟩ ∣ 𝜑 }
3 relcnv Rel { ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑥 ⟩ ∣ 𝜑 }
4 2 releqi ( Rel 𝑅 ↔ Rel { ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑥 ⟩ ∣ 𝜑 } )
5 3 4 mpbir Rel 𝑅
6 5 relbrcnv ( ⟨ 𝐵 , 𝐶 𝑅 𝐴𝐴 𝑅𝐵 , 𝐶 ⟩ )
7 1 3coml ( ( 𝑦 = 𝐵𝑧 = 𝐶𝑥 = 𝐴 ) → ( 𝜑𝜓 ) )
8 2 cnveqi 𝑅 = { ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑥 ⟩ ∣ 𝜑 }
9 reloprab Rel { ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑥 ⟩ ∣ 𝜑 }
10 dfrel2 ( Rel { ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑥 ⟩ ∣ 𝜑 } ↔ { ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑥 ⟩ ∣ 𝜑 } = { ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑥 ⟩ ∣ 𝜑 } )
11 9 10 mpbi { ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑥 ⟩ ∣ 𝜑 } = { ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑥 ⟩ ∣ 𝜑 }
12 8 11 eqtri 𝑅 = { ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑥 ⟩ ∣ 𝜑 }
13 7 12 brrabga ( ( 𝐵𝑊𝐶𝑋𝐴𝑉 ) → ( ⟨ 𝐵 , 𝐶 𝑅 𝐴𝜓 ) )
14 13 3comr ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ⟨ 𝐵 , 𝐶 𝑅 𝐴𝜓 ) )
15 6 14 bitr3id ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( 𝐴 𝑅𝐵 , 𝐶 ⟩ ↔ 𝜓 ) )