Metamath Proof Explorer


Theorem brcnvrabga

Description: The law of concretion for the converse of operation class abstraction. (Contributed by Peter Mazsa, 25-Oct-2022)

Ref Expression
Hypotheses brrabga.1 x = A y = B z = C φ ψ
brcnvrabga.2 R = y z x | φ -1
Assertion brcnvrabga A V B W C X A R B C ψ

Proof

Step Hyp Ref Expression
1 brrabga.1 x = A y = B z = C φ ψ
2 brcnvrabga.2 R = y z x | φ -1
3 relcnv Rel y z x | φ -1
4 2 releqi Rel R Rel y z x | φ -1
5 3 4 mpbir Rel R
6 5 relbrcnv B C R -1 A A R B C
7 1 3coml y = B z = C x = A φ ψ
8 2 cnveqi R -1 = y z x | φ -1 -1
9 reloprab Rel y z x | φ
10 dfrel2 Rel y z x | φ y z x | φ -1 -1 = y z x | φ
11 9 10 mpbi y z x | φ -1 -1 = y z x | φ
12 8 11 eqtri R -1 = y z x | φ
13 7 12 brrabga B W C X A V B C R -1 A ψ
14 13 3comr A V B W C X B C R -1 A ψ
15 6 14 bitr3id A V B W C X A R B C ψ