Metamath Proof Explorer


Theorem opideq

Description: Equality conditions for ordered pairs <. A , A >. and <. B , B >. . (Contributed by Peter Mazsa, 22-Jul-2019) (Revised by Thierry Arnoux, 16-Feb-2022)

Ref Expression
Assertion opideq AVAA=BBA=B

Proof

Step Hyp Ref Expression
1 opthg AVAVAA=BBA=BA=B
2 1 anidms AVAA=BBA=BA=B
3 anidm A=BA=BA=B
4 2 3 bitrdi AVAA=BBA=B