Metamath Proof Explorer


Theorem opideq

Description: Equality conditions for ordered pairs <. A , A >. and <. B , B >. . (Contributed by Peter Mazsa, 22-Jul-2019) (Revised by Thierry Arnoux, 16-Feb-2022)

Ref Expression
Assertion opideq ( 𝐴𝑉 → ( ⟨ 𝐴 , 𝐴 ⟩ = ⟨ 𝐵 , 𝐵 ⟩ ↔ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 opthg ( ( 𝐴𝑉𝐴𝑉 ) → ( ⟨ 𝐴 , 𝐴 ⟩ = ⟨ 𝐵 , 𝐵 ⟩ ↔ ( 𝐴 = 𝐵𝐴 = 𝐵 ) ) )
2 1 anidms ( 𝐴𝑉 → ( ⟨ 𝐴 , 𝐴 ⟩ = ⟨ 𝐵 , 𝐵 ⟩ ↔ ( 𝐴 = 𝐵𝐴 = 𝐵 ) ) )
3 anidm ( ( 𝐴 = 𝐵𝐴 = 𝐵 ) ↔ 𝐴 = 𝐵 )
4 2 3 bitrdi ( 𝐴𝑉 → ( ⟨ 𝐴 , 𝐴 ⟩ = ⟨ 𝐵 , 𝐵 ⟩ ↔ 𝐴 = 𝐵 ) )