Metamath Proof Explorer


Theorem opideq

Description: Equality conditions for ordered pairs <. A , A >. and <. B , B >. . (Contributed by Peter Mazsa, 22-Jul-2019) (Revised by Thierry Arnoux, 16-Feb-2022)

Ref Expression
Assertion opideq
|- ( A e. V -> ( <. A , A >. = <. B , B >. <-> A = B ) )

Proof

Step Hyp Ref Expression
1 opthg
 |-  ( ( A e. V /\ A e. V ) -> ( <. A , A >. = <. B , B >. <-> ( A = B /\ A = B ) ) )
2 1 anidms
 |-  ( A e. V -> ( <. A , A >. = <. B , B >. <-> ( A = B /\ A = B ) ) )
3 anidm
 |-  ( ( A = B /\ A = B ) <-> A = B )
4 2 3 bitrdi
 |-  ( A e. V -> ( <. A , A >. = <. B , B >. <-> A = B ) )