Description: Equality conditions for ordered pairs <. A , A >. and <. B , B >. . (Contributed by Peter Mazsa, 22-Jul-2019) (Revised by Thierry Arnoux, 16-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opideq | |- ( A e. V -> ( <. A , A >. = <. B , B >. <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opthg | |- ( ( A e. V /\ A e. V ) -> ( <. A , A >. = <. B , B >. <-> ( A = B /\ A = B ) ) ) |
|
| 2 | 1 | anidms | |- ( A e. V -> ( <. A , A >. = <. B , B >. <-> ( A = B /\ A = B ) ) ) |
| 3 | anidm | |- ( ( A = B /\ A = B ) <-> A = B ) |
|
| 4 | 2 3 | bitrdi | |- ( A e. V -> ( <. A , A >. = <. B , B >. <-> A = B ) ) |