Metamath Proof Explorer


Theorem brrabga

Description: The law of concretion for operation class abstraction. (Contributed by Peter Mazsa, 24-Oct-2022)

Ref Expression
Hypotheses brrabga.1 x=Ay=Bz=Cφψ
brrabga.2 R=xyz|φ
Assertion brrabga AVBWCXABRCψ

Proof

Step Hyp Ref Expression
1 brrabga.1 x=Ay=Bz=Cφψ
2 brrabga.2 R=xyz|φ
3 df-br ABRCABCR
4 2 eleq2i ABCRABCxyz|φ
5 3 4 bitri ABRCABCxyz|φ
6 1 eloprabga AVBWCXABCxyz|φψ
7 5 6 bitrid AVBWCXABRCψ