Step |
Hyp |
Ref |
Expression |
1 |
|
brrabga.1 |
|- ( ( x = A /\ y = B /\ z = C ) -> ( ph <-> ps ) ) |
2 |
|
brrabga.2 |
|- R = { <. <. x , y >. , z >. | ph } |
3 |
|
df-br |
|- ( <. A , B >. R C <-> <. <. A , B >. , C >. e. R ) |
4 |
2
|
eleq2i |
|- ( <. <. A , B >. , C >. e. R <-> <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } ) |
5 |
3 4
|
bitri |
|- ( <. A , B >. R C <-> <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } ) |
6 |
1
|
eloprabga |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } <-> ps ) ) |
7 |
5 6
|
syl5bb |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( <. A , B >. R C <-> ps ) ) |