| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brrabga.1 |
|- ( ( x = A /\ y = B /\ z = C ) -> ( ph <-> ps ) ) |
| 2 |
|
brcnvrabga.2 |
|- R = `' { <. <. y , z >. , x >. | ph } |
| 3 |
|
relcnv |
|- Rel `' { <. <. y , z >. , x >. | ph } |
| 4 |
2
|
releqi |
|- ( Rel R <-> Rel `' { <. <. y , z >. , x >. | ph } ) |
| 5 |
3 4
|
mpbir |
|- Rel R |
| 6 |
5
|
relbrcnv |
|- ( <. B , C >. `' R A <-> A R <. B , C >. ) |
| 7 |
1
|
3coml |
|- ( ( y = B /\ z = C /\ x = A ) -> ( ph <-> ps ) ) |
| 8 |
2
|
cnveqi |
|- `' R = `' `' { <. <. y , z >. , x >. | ph } |
| 9 |
|
reloprab |
|- Rel { <. <. y , z >. , x >. | ph } |
| 10 |
|
dfrel2 |
|- ( Rel { <. <. y , z >. , x >. | ph } <-> `' `' { <. <. y , z >. , x >. | ph } = { <. <. y , z >. , x >. | ph } ) |
| 11 |
9 10
|
mpbi |
|- `' `' { <. <. y , z >. , x >. | ph } = { <. <. y , z >. , x >. | ph } |
| 12 |
8 11
|
eqtri |
|- `' R = { <. <. y , z >. , x >. | ph } |
| 13 |
7 12
|
brrabga |
|- ( ( B e. W /\ C e. X /\ A e. V ) -> ( <. B , C >. `' R A <-> ps ) ) |
| 14 |
13
|
3comr |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( <. B , C >. `' R A <-> ps ) ) |
| 15 |
6 14
|
bitr3id |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A R <. B , C >. <-> ps ) ) |