Step |
Hyp |
Ref |
Expression |
1 |
|
brrabga.1 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
brrabga.2 |
⊢ 𝑅 = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } |
3 |
|
df-br |
⊢ ( 〈 𝐴 , 𝐵 〉 𝑅 𝐶 ↔ 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 ∈ 𝑅 ) |
4 |
2
|
eleq2i |
⊢ ( 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 ∈ 𝑅 ↔ 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 ∈ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } ) |
5 |
3 4
|
bitri |
⊢ ( 〈 𝐴 , 𝐵 〉 𝑅 𝐶 ↔ 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 ∈ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } ) |
6 |
1
|
eloprabga |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 ∈ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } ↔ 𝜓 ) ) |
7 |
5 6
|
syl5bb |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐴 , 𝐵 〉 𝑅 𝐶 ↔ 𝜓 ) ) |